
Package: usl (via r-universe)
August 26, 2024

Type Package

Title Analyze System Scalability with the Universal Scalability Law

Version 3.0.3

Date 2022-08-27

BugReports https://github.com/smoeding/usl/issues

Depends R (>= 3.0), methods

Imports graphics, stats, nlsr

Suggests knitr

VignetteBuilder knitr

Description The Universal Scalability Law (Gunther 2007)
<doi:10.1007/978-3-540-31010-5> is a model to predict hardware
and software scalability. It uses system capacity as a function
of load to forecast the scalability for the system.

License BSD_2_clause + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.1

Repository https://smoeding.r-universe.dev

RemoteUrl https://github.com/smoeding/usl

RemoteRef HEAD

RemoteSha 55a9201365614cc3a40cd6224c819144a5f48b41

Contents
usl-package . 2
confint,USL-method . 3
efficiency,USL-method . 4
limit.scalability,USL-method . 5
optimal.scalability,USL-method . 6
oracledb . 7
overhead,USL-method . 8

1

https://github.com/smoeding/usl/issues
https://doi.org/10.1007/978-3-540-31010-5

2 usl-package

peak.scalability,USL-method . 9
plot,USL-method . 11
predict,USL-method . 12
print,USL-method . 14
raytracer . 14
scalability,USL-method . 15
show,USL-method . 16
sigma,USL-method . 17
specsdm91 . 18
summary,USL-method . 18
usl . 19
USL-class . 21

Index 22

usl-package Analyze system scalability with the Universal Scalability Law

Description

The Universal Scalability Law is a model to predict hardware and software scalability. It uses
system capacity as a function of load to forecast the scalability for the system.

Details

Use the function usl to create a model from a formula and a data frame.

The USL model produces two coefficients as result: alpha models the contention and beta the
coherency delay of the system.

The Universal Scalability Law has been created by Dr. Neil J. Gunther.

References

Neil J. Gunther. Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable
Applications and Services. Springer, Heidelberg, Germany, 1st edition, 2007.

See Also

usl

confint,USL-method 3

confint,USL-method Confidence Intervals for USL model parameters

Description

Estimate confidence intervals for one or more parameters in a USL model. The intervals are calcu-
lated from the parameter standard error using the Student t distribution at the given level.

Usage

S4 method for signature 'USL'
confint(object, parm, level = 0.95)

Arguments

object A USL object.

parm A specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level The confidence level required.

Details

Bootstrapping is no longer used to estimate confidence intervals.

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter.
These will be labelled as (1-level)/2 and 1 - (1-level)/2 in % (by default 2.5% and 97.5%).

See Also

usl

Examples

require(usl)

data(specsdm91)

Create USL model
usl.model <- usl(throughput ~ load, specsdm91)

Print confidence intervals
confint(usl.model)

4 efficiency,USL-method

efficiency,USL-method Efficiency of the system

Description

The efficiency of a system expressed in terms of the deviation from linear scalability.

Usage

S4 method for signature 'USL'
efficiency(object)

Arguments

object A USL object.

Details

The function returns a vector which contains the deviation from linearity for every measurement of
the model input. A value of 1 indicates linear scalability while values less than 1 correspond to the
fraction of the measurement compared to linear scalability.

Value

A vector of numeric values.

References

Neil J. Gunther. Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable
Applications and Services. Springer, Heidelberg, Germany, 1st edition, 2007.

See Also

usl

Examples

require(usl)

data(raytracer)

Show the efficiency
efficiency(usl(throughput ~ processors, raytracer))

limit.scalability,USL-method 5

limit.scalability,USL-method

Scalability limit of a USL model

Description

Calculate the scalability limit for a specific model.

Usage

S4 method for signature 'USL'
limit.scalability(object, alpha, beta, gamma)

Arguments

object A USL object.

alpha Optional parameter to be used for evaluation instead of the parameter computed
for the model.

beta Optional parameter to be used for evaluation instead of the parameter computed
for the model.

gamma Optional parameter to be used for evaluation instead of the parameter computed
for the model.

Details

The scalability limit is defined as:

Xroof =
γ

α

This is the upper bound (Amdahl asymptote) of system capacity.

The parameters alpha, beta and gamma are useful to do a what-if analysis. Setting these parameters
override the model parameters and show how the system would behave with a different contention
or coherency delay parameter.

The scalability limit is undefined if alpha is zero.

This function accepts an argument for beta although the value is not required to perform the calcu-
lation. This is on purpose to provide a coherent interface.

Value

A numeric value for the system capacity limit (e.g. throughput).

See Also

usl, peak.scalability,USL-method optimal.scalability,USL-method

6 optimal.scalability,USL-method

Examples

require(usl)

data(specsdm91)

limit.scalability(usl(throughput ~ load, specsdm91))
The throughput limit is about 3245

optimal.scalability,USL-method

Point of optimal scalability of a USL model

Description

Calculate the point of optimal scalability for a specific model.

Usage

S4 method for signature 'USL'
optimal.scalability(object, alpha, beta, gamma)

Arguments

object A USL object.

alpha Optional parameter to be used for evaluation instead of the parameter computed
for the model.

beta Optional parameter to be used for evaluation instead of the parameter computed
for the model.

gamma Optional parameter to be used for evaluation instead of the parameter computed
for the model.

Details

The point of optimal scalability is defined as:

Nopt =
1

α

Below this point the existing capacity is underutilized. Beyond that point the effects of diminishing
returns become visible more and more.

The value can be constructed graphically by projecting the intersection of the linear scalability
bound and the Amdahl asymptote onto the x-axis.

The parameters alpha, beta and gamma are useful to do a what-if analysis. Setting these parameters
override the model parameters and show how the system would behave with a different contention
or coherency delay parameter.

oracledb 7

The point of optimal scalability is undefined if alpha is zero.

This function accepts a arguments for beta and gamma although the values are not required to
perform the calculation. This is on purpose to provide a coherent interface.

Value

A numeric value for the load where optimal scalability will be reached.

See Also

usl, peak.scalability,USL-method limit.scalability,USL-method

Examples

require(usl)

data(specsdm91)

optimal.scalability(usl(throughput ~ load, specsdm91))
Optimal scalability will be reached at about 36 virtual users

oracledb Performance of an Oracle database used for online transaction pro-
cessing

Description

A dataset containing performance data for an Oracle OLTP database measured between 8:00am and
8:00pm on January, 19th 2012. The measurements were recorded for two minute intervals during
this time and a timestamp indicates the end of the measurement interval. The performance metrics
were taken from the v$sysmetric family of system performance views.

Format

A data frame with 360 rows on 8 variables

Details

The Oracle database was running on a 4-way server.

The data frame contains different types of measurements:

• Variables of the "time" type are expressed in seconds per second.

• Variables of the "rate" type are expressed in events per second.

• Variables of the "util" type are expressed as a percentage.

The data frame contains the following variables:

8 overhead,USL-method

• timestamp The end of the two minute interval for which the remaining variables contain the
measurements.

• db_time The time spent inside the database either working on a CPU or waiting (I/O, locks,
buffer waits ...). This time is expressed as seconds per second, so two sessions working for
exactly one second each will contribute a total of two seconds per second of db_time. In
Oracle this value is also known as Average Active Sessions (AAS).

• cpu_time The CPU time used during the interval. This is also expressed as seconds per
second. A 4-way machine has a theoretical capacity of four CPU seconds per second.

• call_rate The number of user calls (logins, parses, or execute calls) per second.

• exec_rate The number of statement executions per second.

• lio_rate The number of logical I/Os per second. A logical I/O is the Oracle term for a cache
hit in the database buffer cache. This metric does not indicate if an additional physical I/O
was necessary to load the buffer from disk.

• txn_rate The number of database transactions per second.

• cpu_util The CPU utilization of the database server in percent. This was also measured from
within the database.

overhead,USL-method Overhead method for Universal Scalability Law models

Description

overhead calculates the overhead in processing time for a system modeled with the Universal
Scalability Law. It evaluates the regression function in the frame newdata (which defaults to
model.frame(object)). The result contains the ideal processing time and the additional overhead
caused by contention and coherency delays.

Usage

S4 method for signature 'USL'
overhead(object, newdata)

Arguments

object A USL model object for which the overhead will be calculated.

newdata An optional data frame in which to look for variables with which to calculate
the overhead. If omitted, the fitted values are used.

Details

The calculated processing times are given as percentages of a non-parallelized workload. So for
a non-parallelized workload the ideal processing time will always be given as 100% while the
overhead for contention and coherency will always be zero.

peak.scalability,USL-method 9

Doubling the capacity will cut the ideal processing time in half but increase the overhead per-
centages. The increase of the overhead depends on the values of the parameters alpha and beta
estimated by usl.

The calculation is based on A General Theory of Computational Scalability Based on Rational
Functions, equation 26.

Value

overhead produces a matrix of overhead percentages based on a non-parallelized workload. The
column ideal contains the ideal percentage of execution time. The columns contention and
coherency give the additional overhead percentage caused by the respective effects.

References

Neil J. Gunther. Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable
Applications and Services. Springer, Heidelberg, Germany, 1st edition, 2007.

Neil J. Gunther. A General Theory of Computational Scalability Based on Rational Functions.
Computing Research Repository, 2008. http://arxiv.org/abs/0808.1431

See Also

usl, USL-class

Examples

require(usl)

data(specsdm91)

Print overhead in processing time for demo dataset
overhead(usl(throughput ~ load, specsdm91))

peak.scalability,USL-method

Point of peak scalability of a USL model

Description

Calculate the point of peak scalability for a specific model.

Usage

S4 method for signature 'USL'
peak.scalability(object, alpha, beta, gamma)

10 peak.scalability,USL-method

Arguments

object A USL object.

alpha Optional parameter to be used for evaluation instead of the parameter computed
for the model.

beta Optional parameter to be used for evaluation instead of the parameter computed
for the model.

gamma Optional parameter to be used for evaluation instead of the parameter computed
for the model.

Details

The peak scalability is the point where the throughput of the system starts to go retrograde, i.e.,
starts to decrease with increasing load.

The parameters alpha, beta and gamma are useful to do a what-if analysis. Setting these parameters
override the model parameters and show how the system would behave with a different contention
or coherency delay parameter.

See formula (4.33) in Guerilla Capacity Planning.

This function accepts an argument for gamma although the value is not required to perform the
calculation. This is on purpose to provide a coherent interface.

Value

A numeric value for the point where peak scalability will be reached.

References

Neil J. Gunther. Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable
Applications and Services. Springer, Heidelberg, Germany, 1st edition, 2007.

See Also

usl, optimal.scalability,USL-method limit.scalability,USL-method

Examples

require(usl)

data(specsdm91)

peak.scalability(usl(throughput ~ load, specsdm91))
Peak scalability will be reached at about 96 virtual users

plot,USL-method 11

plot,USL-method Plot the scalability function from a USL model

Description

Create a line plot for the scalability functionh of a Universal Scalability Law model.

Usage

S4 method for signature 'USL'
plot(
x,
from = NULL,
to = NULL,
xlab = NULL,
ylab = NULL,
bounds = FALSE,
alpha,
beta,
...

)

Arguments

x The USL object to plot.

from The start of the range over which the scalability function will be plotted.

to The end of the range over which the scalability function will be plotted.

xlab A title for the x axis: see title.

ylab A title for the y axis: see title.

bounds Add the bounds of scalability to the plot. This always includes the linear scal-
ability bound for low loads. If the contention coefficient alpha is a positive
number, then the Amdahl asymptote for high loads will also be plotted. If the
coherency coefficient beta is also a positive number, then the point of peak
scalability will also be indicated. All bounds are show using dotted lines. Some
bounds might not be shown using the default plot area. In this case the param-
eter ylim can be used to increase the visible plot area and include all bounds in
the output.

alpha Optional parameter to be used for evaluation instead of the parameter computed
for the model.

beta Optional parameter to be used for evaluation instead of the parameter computed
for the model.

... Other graphical parameters passed to plot (see par, plot.function).

12 predict,USL-method

Details

plot creates a plot of the scalability function for the model represented by the argument x.

If from is not specified then the range starts at the minimum value given to define the model. An
unspecified value for to will lead to plot ending at the maximum value from the model. For add =
TRUE the defaults are taken from the limits of the previous plot.

xlab and ylab can be used to set the axis titles. The defaults are the names of the regressor and
response variables used in the model.

If the parameter bounds is set to TRUE then the plot also shows dotted lines for the theoretical bounds
of scalability. These are the linear scalability for small loads and the Amdahl asymptote for the limit
of scalability as load approaches infinity.

The parameters alpha or beta are useful to do a what-if analysis. Setting these parameters over-
ride the model parameters and show how the system would behave with a different contention or
coherency delay parameter.

See Also

usl, plot.function

Examples

require(usl)

data(specsdm91)

Plot result from USL model for demo dataset
plot(usl(throughput ~ load, specsdm91), bounds = TRUE, ylim = c(0, 3500))

predict,USL-method Predict method for Universal Scalability Law models

Description

predict is a function for predictions of the scalability of a system modeled with the Universal
Scalability Law. It evaluates the regression function in the frame newdata (which defaults to
model.frame(object)). Setting interval to "confidence" requests the computation of confi-
dence intervals at the specified level.

Usage

S4 method for signature 'USL'
predict(
object,
newdata,
alpha,
beta,

predict,USL-method 13

interval = c("none", "confidence"),
level = 0.95

)

Arguments

object A USL model object for which prediction is desired.
newdata An optional data frame in which to look for variables with which to predict. If

omitted, the fitted values are used.
alpha Optional parameter to be used for evaluation instead of the parameter computed

for the model.
beta Optional parameter to be used for evaluation instead of the parameter computed

for the model.
interval Type of interval calculation. Default is to calculate no confidence interval.
level Confidence level. Default is 0.95.

Details

The parameters alpha or beta are useful to do a what-if analysis. Setting these parameters over-
ride the model parameters and show how the system would behave with a different contention or
coherency delay parameter.
predict internally uses the function returned by scalability,USL-method to calculate the result.

Value

predict produces a vector of predictions or a matrix of predictions and bounds with column names
fit, lwr, and upr if interval is set to "confidence".

References

Neil J. Gunther. Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable
Applications and Services. Springer, Heidelberg, Germany, 1st edition, 2007.

See Also

usl, scalability,USL-method, USL-class

Examples

require(usl)

data(raytracer)

Print predicted result from USL model for demo dataset
predict(usl(throughput ~ processors, raytracer))

The same prediction with confidence intervals at the 99% level
predict(usl(throughput ~ processors, raytracer),

interval = "confidence", level = 0.99)

14 raytracer

print,USL-method Print objects of class "USL"

Description

print prints its argument and returns it invisibly (via invisible(x)).

Usage

S4 method for signature 'USL'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x An object from class USL.

digits Minimal number of significant digits, see print.default.

... Other arguments passed to other methods.

Value

print returns the object x invisibly.

See Also

usl, USL-class

Examples

require(usl)

data(raytracer)

Print result from USL model for demo dataset
print(usl(throughput ~ processors, raytracer))

raytracer Performance of a ray-tracing software on different hardware configu-
rations

Description

A dataset containing performance data for a ray-tracing benchmark.

Format

A data frame with 11 rows on 2 variables

scalability,USL-method 15

Details

The benchmark measured the number of ray-geometry intersections per second. The data was
gathered on an SGI Origin 2000 with 64 R12000 processors running at 300 MHz.

The data frame contains the following variables:

• processors The number of CPUs used for the benchmark (1–64).

• throughput The number of operations per second.

Source

Neil J. Gunther. Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable
Applications and Services. Springer, Heidelberg, Germany, 1st edition, 2007. Original dataset from
https://sourceforge.net/projects/brlcad/

scalability,USL-method

Scalability function of a USL model

Description

scalability is a higher order function and returns a function to calculate the scalability for the
specific USL model.

Usage

S4 method for signature 'USL'
scalability(object, alpha, beta, gamma)

Arguments

object A USL object.

alpha Optional parameter to be used for evaluation instead of the parameter computed
for the model.

beta Optional parameter to be used for evaluation instead of the parameter computed
for the model.

gamma Optional parameter to be used for evaluation instead of the parameter computed
for the model.

Details

The returned function can be used to calculate specific values once the model for a system has been
created.

The parameters alpha and beta are useful to do a what-if analysis. Setting these parameters over-
ride the model parameters and show how the system would behave with a different contention or
coherency delay parameter.

https://sourceforge.net/projects/brlcad/

16 show,USL-method

Value

A function with parameter x that calculates the scalability value of the specific model.

References

Neil J. Gunther. Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable
Applications and Services. Springer, Heidelberg, Germany, 1st edition, 2007.

See Also

usl, peak.scalability,USL-method optimal.scalability,USL-method limit.scalability,USL-method

Examples

require(usl)

data(raytracer)

Compute the scalability function
scf <- scalability(usl(throughput ~ processors, raytracer))

Print scalability for 32 CPUs for the demo dataset
print(scf(32))

Plot scalability for the range from 1 to 64 CPUs
plot(scf, from=1, to=64)

show,USL-method Show objects of class "USL"

Description

Display the object by printing it.

Usage

S4 method for signature 'USL'
show(object)

Arguments

object The object to be printed.

Value

show returns an invisible NULL.

sigma,USL-method 17

See Also

usl, USL-class

Examples

require(usl)

data(raytracer)

Show USL model
show(usl(throughput ~ processors, raytracer))

sigma,USL-method Extract Residual Standard Deviation ’Sigma’

Description

sigma Extract Residual Standard Deviation ’Sigma’

Usage

S4 method for signature 'USL'
sigma(object, ...)

Arguments

object An object from class USL.

... Other arguments passed to other methods.

Value

A single number.

See Also

usl, USL-class

Examples

require(usl)

data(raytracer)

Print result from USL model for demo dataset
print(sigma(usl(throughput ~ processors, raytracer)))

18 summary,USL-method

specsdm91 Performanced of a Sun SPARCcenter 2000 in the SPEC SDM91 bench-
mark

Description

A dataset containing performance data for a Sun SPARCcenter 2000 (16 CPUs)

Format

A data frame with 7 rows on 2 variables

Details

A Sun SPARCcenter 2000 with 16 CPUs was used for the SPEC SDM91 benchmark in October
1994. The benchmark simulates a number of users working on the UNIX server and measures the
number of script executions per hour.

The data frame contains the following variables:

• load The number of simulated users (1–216).

• throughput The achieved throughput in scripts per hour.

Source

Neil J. Gunther. Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable
Applications and Services. Springer, Heidelberg, Germany, 1st edition, 2007. Original dataset from
http://www.spec.org/osg/sdm91/results/results.html

summary,USL-method USL Object Summary

Description

summary method for class "USL".

Usage

S4 method for signature 'USL'
summary(object, ...)

Arguments

object A USL object.

... Other arguments passed to other methods.

http://www.spec.org/osg/sdm91/results/results.html

usl 19

See Also

usl, USL-class

Examples

require(usl)

data(raytracer)

Show summary for demo dataset
summary(usl(throughput ~ processors, raytracer))

Extract model coefficients
summary(usl(throughput ~ processors, raytracer))$coefficients

usl Create a model for the Universal Scalability Law

Description

usl is used to create a model for the Universal Scalability Law.

Usage

usl(formula, data, method = "default")

Arguments

formula An object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be analyzed. The details of model specification
are given under ’Details’.

data A data frame, list or environment (or object coercible by as.data.frame to a data
frame) containing the variables in the model. If not found in data, the variables
are taken from environment(formula), typically the environment from which
usl is called.

method Character value specifying the method to use. The possible values are described
under ’Details’.

Details

The Universal Scalability Law is used to forcast the scalability of either a hardware or a software
system.

The USL model works with one independent variable (e.g. virtual users, processes, threads, ...) and
one dependent variable (e.g. throughput, ...). Therefore the model formula must be in the simple
"response ~ predictor" format.

20 usl

The model produces two main coefficients as result: alpha models the contention and beta the
coherency delay of the system. The third coefficient gamma estimates the value of the dependent
variable (e.g. throughput) for the single user/process/thread case. It therefore corresponds to the
scale factor calculated in previous versions of the usl package.

The function coef extracts the coefficients from the model object.

The argument method selects which solver is used to solve the model:

• "nls" for a nonlinear regression model. This method estimates all coefficients alpha, beta
and gamma. The R base function nls with the "port" algorithm is used internally to solve the
model. So all restrictions of the "port" algorithm apply.

• "nlxb" for a nonliner regression model using the function nlxb from the nlsr package. This
method also estimates all three coefficients. It is expected to be more robust than the nls
method.

• "default" for the default method using a transformation into a 2nd degree polynom has been
removed with the implementation of the model using three coefficients in the usl package
2.0.0. Calling the "default" method will internally dispatch to the "nlxb" solver instead.

The Universal Scalability Law can be expressed with following formula. C(N) predicts the relative
capacity of the system for a given load N:

C(N) =
γN

1 + α(N − 1) + βN(N − 1)

Value

An object of class USL.

References

Neil J. Gunther. Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable
Applications and Services. Springer, Heidelberg, Germany, 1st edition, 2007.

John C. Nash. nlsr: Functions for nonlinear least squares solutions, 2017. R package version
2017.6.18.

See Also

efficiency,USL-method, scalability,USL-method, peak.scalability,USL-method, optimal.scalability,USL-method,
limit.scalability,USL-method, summary,USL-method, sigma,USL-method predict,USL-method,
overhead,USL-method, confint,USL-method, coef, fitted, residuals, df.residual

Examples

require(usl)

data(raytracer)

Create USL model for "throughput" by "processors"
usl.model <- usl(throughput ~ processors, raytracer)

USL-class 21

Show summary of model parameters
summary(usl.model)

Show complete list of efficiency parameters
efficiency(usl.model)

Extract coefficients for model
coef(usl.model)

Calculate point of peak scalability
peak.scalability(usl.model)

Plot original data and scalability function
plot(raytracer)
plot(usl.model, add=TRUE)

USL-class Class "USL" for Universal Scalability Law models

Description

This class encapsulates the Universal Scalability Law. Use the function usl to create new objects
from this class.

Slots

frame The model frame.
call The call used to create the model.
regr The name of the regressor variable.
resp The name of the response variable.
coefficients The coefficients alpha, beta and gamma of the model.
coef.std.err The standard errors for the coefficients alpha and beta.
coef.names A vector with the names of the coefficients.
fitted The fitted values of the model. This is a vector.
residuals The residuals of the model. This is a vector.
df.residual The degrees of freedom of the model.
sigma The residual standard deviation of the model.
limit The scalability limit as per Amdahl.
peak A vector with the predictor and response values of the peak.
optimal A vector with the optimal predictor and response values.
efficiency The efficiency, e.g. speedup per processor.
na.action The na.action used by the model.

See Also

usl

Index

∗ datasets
oracledb, 7
raytracer, 14
specsdm91, 18

coef, 20
confint,USL-method, 3

df.residual, 20

efficiency (efficiency,USL-method), 4
efficiency,USL-method, 4

fitted, 20
formula, 19

invisible, 14

limit.scalability
(limit.scalability,USL-method),
5

limit.scalability,USL-method, 5

nls, 20
nlsr, 20
nlxb, 20

optimal.scalability
(optimal.scalability,USL-method),
6

optimal.scalability,USL-method, 6
oracledb, 7
overhead (overhead,USL-method), 8
overhead,USL-method, 8

par, 11
peak.scalability

(peak.scalability,USL-method),
9

peak.scalability,USL-method, 9
plot,USL-method, 11

plot.function, 11, 12
predict,USL-method, 12
print,USL-method, 14
print.default, 14

raytracer, 14
residuals, 20

scalability (scalability,USL-method), 15
scalability,USL-method, 15
show,USL-method, 16
sigma,USL-method, 17
specsdm91, 18
summary,USL-method, 18

title, 11

usl, 2–5, 7, 9, 10, 12–14, 16, 17, 19, 19, 21
USL-class, 21
usl-package, 2

22

	usl-package
	confint,USL-method
	efficiency,USL-method
	limit.scalability,USL-method
	optimal.scalability,USL-method
	oracledb
	overhead,USL-method
	peak.scalability,USL-method
	plot,USL-method
	predict,USL-method
	print,USL-method
	raytracer
	scalability,USL-method
	show,USL-method
	sigma,USL-method
	specsdm91
	summary,USL-method
	usl
	USL-class
	Index

